Entri Populer

Rabu, 17 Oktober 2012

Materi Fisika kelas XI


MATERI FISIKA GRAFITASI KELAS XI
Bab 1
GRAFITASi
Sir Isaac Newton yang terkenal dengan hukum-hukum Newton I, II dan III, juga terkenal dengan hukum Grafitasi Umum. Didasarkan pada partikel-partikel bermassa senantiasa mengadakan gaya tarik menarik sepanjang garis yang menghubungkannya, Newton merumuskan hukumnya tentang grafitasi umum yang menyatakan :
Gaya antara dua partikel bermassa m1 dan m2 yang terpisah oleh jarak r adalah gaya tarik menarik sepanjang garis  yang menghubungkan kedua partikel tersebut, dan besarnya dapat dinyatakan dengan persamaan :
F = G
F = Gaya grafitasi, satuan : NEWTON.
G = Konstanta grafitasi, besarnya :
G = 6,67 x 10-11
m = massa benda, satuan : KILOGRAM
r = jarak antara kedua partikel, satuan : METER
Gaya grafitasi adalah besaran vektor yang arahnya senantiasa menuju pusat massa partikel.

Untuk gaya grafitasi yang disebabkan oleh beberapa massa tertentu, maka resultan gayanya ditentukan secara geometris. Misalnya dua buah gaya F1 dan F2 yang membentuk sudut resultante gayanya dapat ditentukan berdasarkan persamaan :

MEDAN GRAFITASI
Kuat medan grafitasi ( intensitas grafitasi ) oleh gaya grafitasi didefinisikan sebagai :
Perbandingan antara gaya grafitasi yang dikerjakan oleh medan dengan massa yang dipengaruhi oleh gaya grafitasi tersebut.              

KUAT MEDAN GRAFITASI OLEH BENDA BERMASSA.
Kuat medan grafitasi dapat ditimbulkan oleh suatu benda bermassa. Misalkan dua buah benda bermassa masing-masing m dan m’ terpisah pada jarak r.




Kuat medan grefitasi adalah suatu besaran vektor yang arahnya senantiasa menuju ke pusat benda yang menimbulkannya. Karena : kuat medan grafitasi di suatu titik oleh beberapa benda bermassa diperoleh dengan menjumlahkan vektor-vektor medan grafitasi oleh tiap-tiap benda.
Sebagai contoh : Kuat medan grafitasi yang disebabkan oleh kedua dua buah benda yang kuat medannya saling membentuk sudut a



ENERGI POTENSIAL GRAFITASI

Benda bermassa m yang terletak diluar bumi, energi potensial grafitasinya pada jarak r dari pusat bumi, Tanda negatif (-) berarti jika benda bergerak di bawah pengaruh gaya grafitasi dari jarak tak terhingga (¥) ke jarak r maka energi potensialnya akan berkurang, karena dipergunakan untuk menambah energi kinetik dengan makin besarnya laju benda waktu bergerak mendekati bumi.
Jika mula-mula benda berada di tempat yang jauh tak hingga ( r = ¥ ) dengan energi kinetik sama dengan nol, maka dalam perjalanan mendekati bumi, medan grafitasi merubah energi potensial menjadi energi kinetik. Pada waktu sampai di bumi energi kinetik benda sama dengan energi potensial grafitasi.
HUKUM KEKEKALAN ENERGI
Hukum kekekalan energi mekanik total berlaku untuk medan grafitasi dan harganya adalah :
Emek = Ek + Ep
Kita dapat mendefinisikan energi potensial sebagai berikut : Jika Ep(A)= energi potensial di titik A dan Ep(B) : energi potensial di titik B, 
POTENSIAL GRAFITASI

Potensial grafitasi didefinisikan sebagai :
Tenaga potensial grafitasi per satuan massa.

 
POTENSIAL GRAFITASI OLEH BENDA BERMASSA
Energi potensial grafitasi benda bermassa m’ yang terletak pada jarak r dari pusat massa benda Potensial grafitasi merupakan besaran skalar, karena itu potensial yang disebabkan oleh berapa benda bermassa merupakan jumlah aljabar dari potensial grafitasi masing-masing benda bermassa itu, Jadi :
Vt  =  V1 + V2 + V3 + ...... + Vn
Beda potensial antara dua titik dalam medan grafitasi didefinisikan sebagai :
Potensial di titik yang satu dikurangi dengan potensial ditItik yang lain.
Usaha yang dilakukan untuk mengangkut, massa m dari satu titik ke titik lain lewat sembarang lintasan sama dengan massa benda itu kali beda potensial antara kedua titik itu.
WA----> B =  m (VB - VA)
WA----> B = Usaha dari A ke B.



HUKUM KEKEKALAN ENERGI

Untuk gerakan benda dalam medan grafitasi yang tidak sama kekuatan di semua titik, hendaknya dipecahkan dengan perhitungan potensial grafitasi atau tenaga potensial grafitasi. Jika gaya-gaya gesekan diabaikan, dasar persangkutannya hanyalah kekekalan energi, yaitu :
Ek + Ep = konstan.
Ek(1) + Ep(1) = Ek(2) + Ep(2)
Disini pembicaraan akan kita batasi hanya mengenai gerakan massa m dalam medan grafitasi yang ditimbulkan oleh titik tunggal yang tetap atau bola homogen bermassa m.
KELAJUAN LEPAS

Sebuah benda yang dilemparkan lurus ke atas dari permukaan bumi hanya dapat naik sampai jarak tertentu pada waktu energi Kinetik benda sama dengan nol, kemudian akan kembali lagi ke permukaan bumi. Jika suatu benda dilemparkan dari permukaan bumi dengan energi kinetik yang besarnya sama dengan energi potensial dipermukaan bumi, maka energi totalnya sama dengan nol.
Ini berarti benda bergerak ke jauh tak terhingga atau lepas dari bumi. Kelajuan awal agar ini terjadi disebut kelajuan lepas,
GERAKAN PLANET
Menurut Keppler ( hukum Keppler ), perbandingan antara T2 dari gerakan planet yang mengelilingi matahari terhadap r3 adalah konstan.
Karena planet bergerak pada lintasan yang tetap maka terdapat gaya centripetal yang mempertahankan planet tetap pada lintasannya.




Gaya sentripetal dalam hal ini adalah gaya grafitasi yang dialami oleh planet yang disebabkan oleh matahari.
Bila massa planet m dan massa planet m dan massa matahari M maka gaya grafitasi antara planet dan matahari pada jarak r, adalah :

Gaya ini merupakan gaya centripetal. Bila selama mengitari matahari planet bergerak dengan laju tetap sebesar v,

Tidak ada komentar:

Posting Komentar